

Test description for dry-type transformers chapter for routine tests

			SGB
			Your dedicated partner
			of the SGB-SMIT Group
1.	SCO	E	4
2.	STAN	IDARDS	5
2	SEDA	PATE-SOURCE AC WITHSTAND VOLTAGE TEST	6
э.	JLFF		0
	3.1.	STANDARD	6
	3.2. 2.2		0
	3.3. 2 2 1	Tanning position for test	0
	332	Test setun	6
	3.3.3	. Commonly used measuring devices for testing	7
	3.3.4	. Recorded values for the test	7
	3.4.	TEST CRITERIA	7
4.	MEA	SUREMENT OF VOLTAGE RATIO AND CHECK OF PHASE DISPLACEMENT	8
	4.1.	Standard	8
	4.2.	Аім	8
	4.3.	THEORETICAL PRINCIPAL	8
	4.4.	MEASUREMENT	9
	4.4.1	. Tapping position for measurement	9
	4.4.2	. Test setup	9
	4.4.3	. Commonly used measuring devices for measurement	10
	4.4.4	. Recorded values for the measurement	10
	4.5.	Test criteria / Maximum values	10
5.	MEA	SUREMENT OF THE RESISTANCE OF THE WINDINGS	11
	5.1.	Standard	11
	5.2.	Аім	11
	5.3.	MEASUREMENT	11
	5.3.1	. Tapping position for measurement	12
	5.3.2	. Test setup	12
	5.3.3	. Commonly used measuring devices for measurement	13
	5.3.4	. Recorded values for the medsurement	13
	5.4.	TEST CRITERIA / MIAXIMUM VALUES	13
6.	INDU	ICED AC WITHSTAND VOLTAGE TEST	14
	6.1.	STANDARD	14
	6.2.	Аім	14
	6.3.	TEST	14
	6.3.1	. Tapping position for testing	15
	6.3.2	. Test setup	15
	63/	Recorded values for the test	15
	6.4.	TEST CRITERIA	15
7.	MEA	SUREMENT OF THE NO-LOAD LOSSES AND CURRENT	16
	71	STANDARD	16
	7.1.	Аім	10
	7.3	THEORETICAL PRINCIPAL	10
	7.4.	MEASUREMENT	16
	7.4.1	. Tapping position for measurement	16

7.4.	2. Equivalent circuit diagram for a transformer in no-load	17
7.4.	3. Test setup	17
7.4.	4. Commonly used measuring devices for measurement	18
7.4.	5. Recorded values for the measurement	18
7.5.	Test criteria / Maximum values	18
8. ME	ASUREMENT OF THE SHORT-CIRCUIT IMPEDANCE AND THE SHORT-CIRCUIT LOSSES	19
8.1.	Standard	19
8.2.	Аім	19
8.3.	Measurement	19
8.3.	1. Tapping position for measurement	19
8.3.	2. Equivalent circuit diagram for transformer in load	20
8.3.	3. Test setup	20
8.3.	4. Commonly used measuring devices for measurement	20
8.3.	5. Recorded values for the measurement	20
8.4.	Calculations to determine P_{L} and ez at the reference temperature	21
8.5.	Test criteria / Maximum values	23
9. COM	NTROL OF THE TEMPERATURE SENSORS	24
9.1.	COMMONLY USED MEASURING DEVICES FOR MEASUREMENT	24
10. P	PARTIAL DISCHARGE MEASUREMENT	25
10.1.	STANDARD	25
10.2.	Аім	25
10.3.	THEORETICAL PRINCIPAL	25
10.3	3.1. Possible reasons for PD	26
10.3	3.2. Outer partial discharges (corona)	26
10.3	3.3. Inner partial discharges	27
10.3	3.4. PD classification:	27
10.4.	Measurement	28
10.4	4.1. Measurement chamber	28
10.4	4.2. Connection	28
10.4	4.3. Tapping position for measurement	28
10.4	4.4. Measurement Frequency band	29
10.4	4.5. Calibration	29
10.4	4.6. Measuring duration and voltage levels	29
10.4	4.7. Test setup	30
10.4	4.10. Commonly used measuring devices for measurement	30
10.4	4.11. Recorded values for the measurement	31
10.5.	Test criteria / Maximum values	31
11. A	PPENDIX	32
11.1.	EXAMPLE TEST CERTIFICATE	32
11.2.	EXAMPLE RATING PLATE	43
11.3.	EXAMPLE CALIBRATION LIST	44
11.4.	TEST LAB LAYOUT	45
11.5.	LIST OF PICTURES, FORMULAS, TABLES AND SOURCES	46

Issued by: Starkstrom-Gerätebau GmbH Test lab cast resin transformers Christopher Kammermeier GTTP Document No.: 02.04.80-11.004 Rev F on 20.12.2022

1. Scope

This is a general test description for dry-type transformers at SGB and will apply if no specific customer requirements are given for the individual tests.

Special customer standards or values are not included in this description.

If not indicated, the description is exemplary for a three-phase transformer with two winding systems. Auxiliary parts of the transformer are also not included, except as indicated e.g., temperature sensors.

The scope of this chapter describes "routine" tests, this means the standard requires these tests on each transformer (see IEC 60076-1:2011 chapter 3.11.1).

Part 11: Dry-type transformers IEC 60076-11:2018

Replacement for DIN EN 60726 (VDE 0532-726):2003-10

with reference to:	
IEC 60076-1:2011	Power transformers - General
IEC 60076-3:2013	Insulation levels, dielectric tests and external clearances in air
IEC 60076-16:2011	Transformers for wind turbine application
IEC 60076-19:2013	Determination of uncertainties in the measurements of losses
IEC 60270:2000	High voltage test techniques – Partial discharge measurements
EN 50588-1:2015	Medium power transformers 50 Hz, with highest voltage for equipment not exceeding 36 kV – General requirements
EN 50629:2015	Energy performance of large power transformers (Um > 36 kV or Sr \geq 40 MVA)

Others: EC Directive 2009/125/EC of 21 October 2009 Regulation EC No. 548/2014 of 21 May 2014

on the Ecodesign of energy related products to implement the EC Directive 2009/125/EC

3. Separate-source AC withstand voltage test

3.1. Standard

IEC 60076-11:2018 clause 14.2.5 // part 3 clause 10

3.2. Aim

This insulation test ensures that the quality of the insulation between the windings and the earthed parts, core, core clamping, etc. is correct. Furthermore, the constructive coordination is checked.

3.3. Test

The test is applied using AC voltage and is to be carried out with a single phase-AC voltage supply that is as much as possible sinusoidal and does not fall below 80% of the rated frequency. The full test voltage has to be applied for 60s between all connected windings and auxiliary wirings. All other terminals and the core of the transformer, including the temperature sensors, will be shorted and grounded.

The test level complies with IEC 60076-11:2018 (clause 11.1, table 3).

If the transformer has an installation altitude higher than 1000m, the test level shall be corrected according to IEC 60076-11:2018 (clause 11.2, table 4).

For auxiliary wiring the test level is 2 kV.

3.3.1. Tapping position for test

During the test, all windings are shorted. Therefore, the tapping position is of no consequence. Usually it is the tapping position with the highest turns (tap 1).

3.3.2. Test setup

picture 1: test setup for separate-source AC withstand voltage test

S: electricity supply T₁: high voltage transformer T₂: transformer to be tested E: voltage divider P₁: peak volt meter P₂: ampere meter (measurement shunt)

3.3.3. Commonly used measuring devices for testing

measuring devices	manufacturer	type	range / accuracy	frequency	class
High Voltage Tester	ETL Prüftechnik	UH28C	5 kV/100 mA	50-60 Hz	n.a.
Hygro-/Thermometer	Greisinger	GFTH95	0-70 °C	n.a.	n.a.
	electronic		10-95 % r.F.		
Peak voltage meter	MPS	SMG	100 kV	50/60 Hz	n.a.
Measuring capacitor	MWB	CM80	80 kV	50/60 Hz	
Peak voltage meter	MPS	SMG	200 kV	50/60 Hz	n.a.
Measuring capacitor	MPS	MK200	200 kV	50/60 Hz	

table 1: Commonly used measuring devices

3.3.4. Recorded values for the test

The test voltage, test frequency and test duration are documented in the test certificate.

3.4. Test criteria

The test is passed if no break down of the test voltage occurs.

4. Measurement of voltage ratio and check of phase displacement

4.1. Standard

IEC 60076-11:2018 clause 14.2.2 // part 1 clause 11.3

4.2. Aim

- Checking voltage ratio "ü" from HV to LV
- > Determining deviations from the measured data to the desired values and documenting them
- Proving polarity as well as vector group

4.3. Theoretical principal

Firstly, the desired value for the single-phase translation is determined.

Additionally, the voltage is being converted phase to phase in the phase voltage and the HV phase voltage is being divided by the LV phase voltage.

On a Dyn (10kV/400 V) circuit e.g. $\ddot{U} = \frac{U_1}{U_2/\sqrt{3}} = \frac{10kv}{400/\sqrt{3}} = 43.30$

$$\ddot{\mathbf{U}} = \frac{N_1}{N_2} = \frac{U_1}{U_2} = \frac{I_2}{I_1}$$

N₁ = number of windings primary side, N₂ = number of windings secondary side

formula 1: Voltage ratio formula for transformers

Afterwards the connections for the single-phase measurement will have to be determined. This is mandatory to prove the accuracy of the polarity and the vector group. To do that the phase angle will be determined via the characteristic number of the group vector.

$$\varphi = 5 * 30^{\circ} = 150^{\circ}$$

This means that each phase of the LV winding is shifted 150° clockwise from the phase of the HV.

If you now draw a vector diagram with the circuits, it is possible to find two parallel vectors. In this case 1U-1V to 2N-2U. So, if it is measured in single phase, the phase deviation has to be 0°. If this applies the correct vector group is proven.

On certain circuits an additional theoretic, artificial neutral point has to be created.

4.4. Measurement

The measurement of the voltage ratio in proportion to " \ddot{u} " and of the phase angle ϕ is conducted via a voltage ratio measurement bridge.

Via a measurement program the direct aberration is shown from the desired values of the voltage ratio and of the vector group, respectively the phase angles.

The measurement is conducted with a voltage between 10V - 230V AC (depending on the bridge), in single phase. In the process, the HV winding is fed, which leads to the induction of voltage in the LV winding. This voltage is measured and is compared with the fed voltage.

The result is compared with the desired values and the difference in percentage is displayed.

Through measuring between phase to phase or between a phase and the neutral point, the phase angle will be also controlled.

4.4.1. Tapping position for measurement

Between the measurements, all HV taps are to be measured during this test.

> In case of an LV tap, it is necessary to measure the HV nominal tap to the LV tap.

4.4.2. Test setup

picture 3: test setup for the measurement of the voltage ratio

U1: supply voltage of the bridge U2: secondary voltage transformer being tested

4.4.3. Commonly used measuring devices for measurement	or measurement
--	----------------

measuring devices	manufacturer	type	range / accuracy	frequency	class
Transformer Turns	HAEFELY /	TTR 2796	Ratio	50/60 Hz	n.a.
Ratio Meter	Tettex		0.8 - 100		
			101 – 1,000 -> ± 0.03 %		
			1,001 – 1,500 -> ± 0.05 %		
			1,501 – 2,000 -> ± 0.05 %		
			2,001 – 4,000 -> ± 0.05 %		
			4,001 – 13,000 -> ± 0.05 %		
			13,001 – 20,000 -> ± 0.20 %		
			Phase		
			± 180 ° -> ± 0.05 °		
Winding Analyser	HAEFELY /	WA 2293	Ratio	50/60 Hz	n.a.
	Tettex		1.0 - 100 -> 0.05 %		
			100 – 2,000 -> 0.1 %		
			20,000 - 100,000 -> 1 %		
			Phase (Ratio)		
			1.0 - 500 -> ± 0.25 °		
			500 – 10,000 -> ± 1.00 °		
			Phase (Clock number)		
			1.0 - 500 -> ± 0.05 °		
universal measuring	Omicron	CPC 100			n.a.
instrument		CP TD1			
		CP SB1			

table 2: Commonly used measuring devices

4.4.4. Recorded values for the measurement

All tap settings of the transformer are measured and the results are documented and given in percentage from "ü".

4.5. Test criteria / Maximum values

The test is not seen as passed if the voltage ratio deviates more than \pm 0.5% (or 10% of the short circuit impedance if lower) in principal tapping, from the guaranteed values according to Standard IEC 60076-1 (clause 10 limiting deviation, table 1, section 2).

The customer specified vector group has to be proven.

5. Measurement of the resistance of the windings

5.1. Standard

IEC 60076-11:2018 clause 14.2.1 // part 1 clause 11.2

5.2. Aim

- Recognizing poor / faulty contacts
- > Determining issues / damage in the windings
- > Resistance data is needed for the calculation of the short-circuit losses at the reference temperature

5.3. Measurement

Before measurement the external cooling medium temperature shall not have change more than 3°C in 3 hours previous to testing.

To keep the influence of the reactance as low as possible, the measurement is conducted using direct current.

The measurement is conducted either with a resistance measurement bridge or an automatic program.

Both systems are based on current-voltage measurements.

For this measurement, a steady current is fed through one connection, on the other connection amperage and voltage are measured. Finally, the resistance is calculated using Ohm's law as shown in the formula below.

$$R = \frac{U}{I}$$

R= ohmic resistance U=voltage I=current
formula 2: ohmic law

The fed current is about $1/15}$ of the rated current. If the amperage would be too high or would flow for too long, the windings would heat up and falsify the measurements.

Approximately the first 30 seconds of the resistance measurement are not valid, because the current flowing through the turns has to stabilize.

After the resistance measurement, the induced AC withstand voltage test is carried out. Due to the fact that the core has become saturated because of the use of DC current. The induced AC withstand voltage test counters the saturation and the core is demagnetized (degaussing).

5.3.1. Tapping position for measurement

If the HV tapping range is between ±5% of rated voltage, only the principal tap shall be measured. Otherwise as a typetest, the taps with the highest and lowest number of turns will also measured.

In the case of an LV tap, it is necessary measure the tap.

5.3.2. Test setup

During this measurement, the ohmic resistance (real resistance R) of all windings is measured. It is always measured phase to phase e.g. U–V, U-W, V-W.

The connection for the measurement is usually as close as possible to the winding.

measuring devices	manufacturer	type	range / accuracy	frequency	class
Micro Ohmmeter	TINSLEY	5895	0.1 μΩ – 10 μΩ -> 0.2 %	DC	n.a.
			$10 \ \mu\Omega - 100 \ \Omega \ -> 0.1 \ \%$		
			0.1 A - 10 A DC		
Winding Analyser	HAEFELY / Tettex	WA 2293	$0.1~\mu\Omega$ – 300 $\mu\Omega~$ -> 0.1 % $\pm~0.5~\mu\Omega$	DC	n.a.
			300.1μΩ - 30kΩ -> 0.1 %		
			30.01kΩ - 300Ω -> 1 %		
Micro Ohmmeter	IBEKO Power AB - DV	RMO40T	$0.1 \ \mu\Omega - 2 \ k\Omega \rightarrow \pm (0.1 \ \% \ rgd + 0.1 \ \%)$	DC	n.a.
	Power		FS)		
			$2k\Omega - 10k\Omega \rightarrow \pm (0.2 \% \text{ rgd} + 0.1 \%)$		
			FS)		
			5mA - 40A DC		
Micro Ohmmeter	IBEKO Power AB - DV	RMO60T	0.1 μΩ - 2kΩ	DC	n.a.
	Power		5mA - 60A DC		
			±(0.2% rgd + 0.2% FS)		
universal measuring	Omicron	CPC 100		DC	n.a.
instrument		CP TD1			
		CP SB1			
Hygro-/Thermometer	Greisinger	GFTH95	0-70 °C	n.a.	n.a.
	electronic		10-95 % r.F.		

5.3.3. Commonly used measuring devices for measurement

table 3: Commonly used measuring devices

5.3.4. Recorded values for the measurement

The measured resistance values are documented in Ω .

The actual temperature θ_{meas} is written into the protocol to give a relation to the reference temperature for the short-circuit measurement.

Measurement uncertainty in %.

5.4. Test criteria / Maximum values

Not applicable

6. Induced AC withstand voltage test

6.1. Standard

IEC 60076-11:2018 clause 14.2.6 // part 3 clause 11.2 (IVW)

6.2. Aim

Checking of the inner insulation of the windings, insulation between the single windings and layers and between the windings of single phases.

6.3. Test

The test is conducted with double the rated voltage $(2xU_R)$, the duration of the test is calculated after formula 3, but not less then 15 sec.

The test voltage is usually fed at the winding with the lowest rated voltage, via the induction of the transformer it is ensured that double the rated voltage can be found on all windings.

The test frequency has to be at least doubled the rated frequency f_R to prohibit saturation of the core. If the core would be brought into saturation, the magnetizing current will rise disproportionally (see picture belowpicture 5).

formula 3: calculation of the duration for the induced AC withstand voltage

The test at the SGB-test facility is made with a test frequency of 200 Hz for 2 min. (during the initial testing), to assure a higher level of security.

6.3.1. Tapping position for testing

It is only necessary to reach the rated turn voltage.

Therefore, the tapping position is of no significance. Usually it is the principal tapping position.

6.3.2. Test setup

picture 6: Test setup for induced AC withstand voltage test

- S: electricity supply T2: transformer to be tested
- T3: current transformer T4: voltage transformer

P1: wattmeter P2: amperemeter (I_{RMS}) P3: voltmeter (U_{RMS})

6.3.3. Commonly used measuring devices for testing

measuring devices	manufacturer	type	range / accuracy	frequency	class
Precision Power	ZIMMER	LMG 500	U rms 1000 V / I rms 32 A	DC - 10 MHz	0.01-0.03
Analyzer			Upk 3200V/Ipk 120A		
LV-current-transf.	H&B	Ti 48	2.5-500 A/5 A	50/60 Hz	0.1
HV-voltage-transf.	epro	NVRD 40	2-40 kV/100 V	50/60 Hz	0.02
HV-current-transf.	epro	NCO 60	1-600 A/5 A	50/60 Hz	0.01

table 4: Commonly used measuring devices

6.3.4. Recorded values for the test

The test voltage, test frequency and test duration are documented in the test certificate.

6.4. Test criteria

The test is passed if no break down of the test voltage occurs.

7. Measurement of the no-load losses and current

7.1. Standard

IEC 60076-11:2018 clause 14.2.4 // part 1 clause 11.5

7.2. Aim

Measurement and documentation of the no-load current $I_{0}\,and$ the no-load losses P_{0}

7.3. Theoretical principal

The following losses arise during no-load measurements

- Iron losses P_{Fe} in the core and other constructive parts
- Dielectric losses in the insulation

As the iron losses P_{Fe} account for a much larger percent of total losses than the dielectric losses, the dielectric losses can be omitted from the formula, so the following formula applies:

 $P_0 = P_{Fe}$

Iron losses are caused by hysteresis losses in the magnetization.

Eddy currents do not have as much of an influence in modern transformers using individually insulated core iron sheets.

7.4. Measurement

The measurement of no-load losses and of the no-load current are made using the same test setup as for the induced over voltage test (clause 6). It is carried out with the rated voltage U_R and the rated frequency f_R . The measurement voltage is applied as close to U_R as possible.

The measured losses are corrected after IEC 60076-1 clause 11.5

$P_0(P_C) = P_M * (1 + d)$	$d = \frac{U' - U}{U}$	
P₀=iron losses	U'=rectified value	
P _M =measured losses	U=arithmetic average of	

The no-load losses do not have to be named at a reference temperature, because with rising temperature the losses will accordingly decrease.

This is due to the fact that the core in a warm state, is slightly easier to magnetize and because of this, less losses will occur.

7.4.1. Tapping position for measurement

It is only necessary to reach the rated turn voltage.

Therefore, the tapping position is of no significance. Usually it is the principal tapping position.

7.4.2. Equivalent circuit diagram for a transformer in no-load

picture 7: transformer in no-load

7.4.3. Test setup

picture 8: Test setup for measurement of no-load losses and of no-load current

- S: electricity supply
- T2: transformer to be tested
- T3: current transformer
- T4: voltage transformer

P1: wattmeter P2: amperemeter (I_{RMS}) P3: voltmeter (U_{RMS})

7.4.4. Commonly used measuring devices for measurement

measuring devices	manufacturer	type	range / accuracy	frequency	class
Precision Power Analyzer	ZIMMER	LMG 500	U rms 1000 V / I rms 32 A U pk 3200 V / I pk 120 A	DC - 10 MHz	0.01-0.03
LV-current-transf.	H&B	Ti 48	2.5-500 A/5 A	50/60 Hz	0.1
HV-voltage-transf.	epro	NVRD 40	2-40 kV/100 V	50/60 Hz	0.02
HV-current-transf.	epro	NCO 60	1-600 A/5 A	50/60 Hz	0.01

table 5: Commonly used measuring devices

7.4.5. Recorded values for the measurement

Voltage [V], amperage [A] and corrected losses [W] for all phases (in R.M.S.) are recorded. The no-load current is given in a percentage of the rated current.

Measurement uncertainty in %.

7.5. Test criteria / Maximum values

> Following Standard IEC 60076-1 (clause 10 limiting deviation, table 1, section 1).

The total losses are only allowed to differ a max. of 10 % and the no-load respectively short-circuit losses only a max. of 15% from the guaranteed value.

If the no-load current is bindingly given, it is allowed to differ a max. of +30 % of the values (section 5 in table 1).

Or

Agreement between supplier and purchaser

Or if the transformer is for the European market

The maximum Value for the no-load losses P₀ must be made in accordance with Standard EN 50588-1 table 4 (if applicable table 5 and 6) or table 8 or Standard EN 50629 table A.1

8. Measurement of the short-circuit impedance and the short-circuit losses

8.1. Standard

EN 60076-11:2018 clause 14.2.3 // part 1 clause 11.4

8.2. Aim

- Determination of the short-circuit voltage / impedance in percent (U_κ or ez) at a reference temperature.
- ➢ Determination of the short-circuit losses (PL) at a reference temperature.

```
<u>Short-circuit voltage</u> = The voltage, at which primary and secondary rated current I<sub>R</sub> flows, if one of the sides of the transformer is shorted.
```

8.3. Measurement

The system with the lower current (e.g. HV) is fed and the other system/s are short-circuited. This also depends on the various loading cases of the transformer.

A current between 50% and 100% of the rated current of the connected windings is fed. In our testing facility, we prefer to use 60% of the rated current when possible as through years of experience we have found this to be an optimum percent at which to take the measurement due to the ability to reach the measuring current faster, thus preventing the warming of the transformer and it also brings the measurement adequately over the IEC minimum of 50%.

It is imperative that the measurement be carried out as swiftly as possible, because the windings will heat up due to the current and the measured data is then falsified.

Due to the fact that during operation the short-circuit losses will increase through heating of the windings, P_L and ez are given at the reference temperature.

The connection for the measurement is usually as close as possible to the winding (similar connection as in chapter 5 Measurement of the resistance of the windings.

The reference temperature is calculated using the average winding-temperature rise limits from all windings, as given in IEC 60076-11 (clause 10.1, table 2) + 20 or if the winding-temperature rise is different from table 2 then average winding-temperature rise limits from all windings + yearly average temperature of the external cooling medium.

reference temperature θ_{ref} = average temperature rise of windings $\Delta \theta w$ + 20°C

e.g.class of insulation $F \triangleq 100 \text{ Kelvin}$ reference temperature = $100K + 20^{\circ}C = 120^{\circ}C$

8.3.1. Tapping position for measurement

If the HV tapping range is between ±5 % of rated voltage, only the principal tap shall be measured. Otherwise as a typetest, the taps with the highest and lowest number of turns will also measured.

In case of an LV tap, it is necessary measure the tap.

8.3.2. Equivalent circuit diagram for transformer in load

picture 9: transformer in short-circuit

8.3.3. Test setup

picture 10: test setup of the short-circuit measurement

S: electricity supplyC1: capT2: transformer to be testedP1: waT3: current transformerP2: amT4: voltage transformerP3: voltage

C1: capacitor bank P1: wattmeter

- P2: amperemeter (IRMS)
- P3: voltmeter (U_{RMS})

8.3.4. Commonly used measuring devices for measurement

measuring devices	manufacturer	type	range / accuracy	frequency	class
Precision Power Analyzer	ZIMMER	LMG 500	U rms 1000 V / I rms 32 A U pk 3200 V / I pk 120 A	DC - 10 MHz	0.01-0.03
LV-current-transf.	H&B	Ti 48	2.5-500 A/5 A	50/60 Hz	0.1
HV-voltage-transf.	epro	NVRD 40	2-40 kV/100 V	50/60 Hz	0.02
HV-current-transf.	epro	NCO 60	1-600 A/5 A	50/60 Hz	0.01

table 6: Commonly used measuring devices

8.3.5. Recorded values for the measurement

All voltages [V], amperages [A] and losses [W] (in R.M.S.) are then recorded. Measurement uncertainty in %.

8.4. Calculations to determine PL and ez at the reference temperature

Because the measurement is carried out at between 50% und 100% of the rated current, the measured values have to be calculated first. This is possible as losses increase quadratically with the current.

$$P_{L \, cold}(at \, I_R) = P_{meas} * \left(\frac{I_{R \, HV}}{I_{meas}}\right)^2$$

formula 5: calculation of short-circuit losses at measured temperature

To calculate the losses in relation to the temperature, the ohmic part of the losses (I^2R) and the additional losses (P_Z) are determined (reactance in picture 9: transformer in short-circuit).

With the previous data, a calculation for the additional losses can be accomplished, so foremost, the ohmic part of the losses are calculated.

This is calculated via the ohmic law through conversion.

$$\{P = U * I\} \quad \& \quad \{U = R * I\} \quad \triangleq \quad P = I^2 * R$$

formula 6: conversion of the ohmic law

To do that, the average of the three measurements are taken (clause 5 Measurement of the resistance of the windings) and are multiplied by the appropriate rated squared current.

Additionally, the factor 1.5 is necessary, because the resistance values and the current are related in phase to phase. Through calculation to phase values the factor 1.5 results. Finally, only the ohmic losses of HV and LV have to be added.

$$\sum I^{2} R_{cold} = (I_{R HV}^{2} * average R_{HV} * 1,5) + (I_{R LV}^{2} * average R_{LV} * 1,5)$$

formula 7: calculation of the ohmic losses at measured temperature

Because now the losses in general, as well as the ohmic losses are known, the difference between both, forms the additional losses (P_{z})

$$P_{Z \ cold} = P_{L \ cold} - \sum I^2 R_{cold}$$

formula 8: calculation of additional losses at measured temperature

So, the ohmic losses and the additional losses are now known. For the next step both losses are calculated to the reference temperature.

To put that into a formula only the material constant is needed.

$$\theta_{K} = by Al = 225$$
 $\theta_{K} = by Cu = 235$

picture 11: material constant of Al and Cu

With the constant, the losses will either be calculated up or down.

The ohmic parts (I^2R) are caused by the winding itself.

Due to that fact, they are calculated upwards.

$$\sum I^2 R_{hot} = \sum I^2 R_{cold} * \frac{\theta_K + \theta_{ref}}{\theta_K + \theta_{meas}}$$

formula 9: calculation of the ohmic losses at a reference temperature

The additional losses (P_Z) are caused by all non-ohmic losses. E.g. core magnetization, eddy currents, etc.

$$P_{Z hot} = P_{Z cold} * \frac{\theta_K + \theta_{meas}}{\theta_K + \theta_{ref}}$$

formula 10: calculation of additional losses at a reference temperature

The sum of both tests, results in the total short-circuit losses (P_L) at the reference temperature

$$P_{L hot} = \sum I^2 R_{hot} + P_{Z hot}$$

formula 11: calculation of short-circuit losses at reference temperature

Now that the losses are known, the calculation of the short-circuit voltage, respectively the short-circuit impedance, can be carried out in percent.

For that, the measurement voltage for the short-circuit test again has to be related to the rated current, because of the linear behavior of current and voltage this is very easy. Afterwards using the same formula, the voltage in percent of the rated voltage is stated.

$$ez_{cold} = rac{I_{RHV}}{I_{meas}} * U_{meas} * rac{100\%}{U_{RHV}}$$

formula 12: calculation of short-circuit voltage at measured temperature

To give the (ez) at the reference temperature this value is divided again into the ohmic part (er) and an imaginary part (ex) (similar to (P_Z)).

To do that, the proportion of the rated apparent power of the transformer and the short-circuit losses at measured temperature are used.

$$er_{cold} = rac{P_{L\,cold}*100\%}{S_R}$$

formula 13: calculation of the ohmic parts of short-circuit voltage at measured temperature

The imaginary part (ex) is derived from the Kappic triangle but is seen as being independent of the temperature.

$$ex = \sqrt{ez_{cold}^2 - er_{cold}^2}$$

formula 14: calculation of the imaginary part ex

picture 12: Kappic triangle

To now determine the ohmic part (er) of the short-circuit voltage, the same calculation as for (er_{cold}) will be used, but now the losses are at the reference temperature.

$$er_{hot} = \frac{P_{L \ hot} * 100\%}{S_R}$$

formula 15: calculation of the ohmic parts of the short-circuit voltage at a reference temperature

To now finally determine the short-circuit voltage at the reference temperature, the ohmic parts (er) and the imaginary parts (ex) are being summed up using the Kappic triangle.

$$ez_{hot} = \sqrt{ex^2 + er_{hot}^2}$$

formula 16: calculation of the short-circuit voltage at a reference temperature

In the test protocol these calculated values are given in the section "Measurement of short-circuit impedance and load loss ":

- Load losses at rated current PL at IR [W]
- Additional losses Pz [W] *
- Ohmic losses I²R [W] *
- Load losses PL [W] *
- Imaginary impedance ex [%] *
- Ohmic impedance er [%] *
- Short-circuit impedance *ez* [%] *

* (calculated to the reference temperature)

8.5. Test criteria / Maximum values

Following Standard IEC 60076-1 (clause 10 limiting deviation, table 1, section 1).

The total losses are only allowed to differ a max. of 10 % and the no-load respectively short-circuit losses only a max. of 15 % from the guaranteed value.

If the no-load current is bindingly given, it is allowed to differ a max. of + 30 % of the values (section 5 in table 1).

Or

> Agreement between supplier and purchaser

Or <u>if the transformer is for the European market</u>

The maximum Value for the load losses PL must be made in accordance with Standard EN 50588-1 table
 4 (if applicable table 5 and 6) or table 8 or
 Standard EN 50629 table A.1

9. Control of the temperature sensors

To ensure that all temperature sensors that are installed in the transformer function faultlessly, their resistances are measured after the routine test with an ohmmeter and documented (in Ω) in the test protocol.

picture 13: connection of temperature sensors

9.1. Commonly used measuring devices for measurement

measuring devices	manufacturer	type	range / accuracy	frequency	class
Multimeter	FLUKE	Fluke-87-V	1000V/10A/50MΩ	DC	0.1-1.0

table 7: Commonly used measuring devices

10.Partial discharge measurement

10.1. Standard

IEC 60076-11:2018 clause 14.2.7 // EN 60270 // IEC 60076-3:2013

10.2. Aim

- Proof of quality of the insulation (cast)
- > Detection of defects (e.g. missing contact washers, constructive parts that are not grounded)

10.3. Theoretical principal

Partial discharge (also **Pre-discharge**) is a term in the electrotechnical field. It is primarily about the form and characteristics of classes of insulation. If in high voltage insulations or alongside air distances highly inhomogeneous field profiles occur, it can lead to a transgression of dielectric strength levels relating to the type of material. In this state of an incomplete electric break down in the insulation between the electrodes, discharges are identified. Such partial discharges (abbreviated also referred to as "PD") mostly occur in insulation with ac voltage being applied.

picture 14: Lichtenberg-figure in an ashlar of acryl. Actual size: 76mm × 76mm × 51mm

picture 15: schematic display of the development of partial discharge in a sharp point-plate arrangement generated through incoming radiation

Consequences of PD: These discharges can cause a complete break down of insulation over time. Looking at the safety of a company and the life span of a transformer, a transformer is not allowed to show any elevated PD-values (max. 10 pC).

picture 16: the sliding discharge on a board out of polycarbonate leading to the destruction of the insulator

10.3.1. Possible reasons for PD

- > electric free floating constructive parts in the transformer (e.g. bad grounding connection)
- material or constructive mistakes (e.g. bad contact, missing contact washers)
- dimensioning faults
- ➤ casting
- > spikes on HV or grounded parts within the electrical field
- there are many various reasons that a transformer can have elevated levels of PD, from insignificant to serious

10.3.2. Outer partial discharges (corona)

Outer partial discharges are discharges from the surfaces of free electrodes of metal into the surrounding air space. They generally originate at sharp edged parts, at which the power of the field is highly increased. This phenomenon is commonly seen on high voltage wires with an audible and sometimes visible corona discharge. Also St. Elmo's fire is placed into this category. Outer pre-discharges can be prohibited through a rounded design of all edges, as well as field controlling rings (e.g. at high voltage cascades).

In the PD-Measuring Software, corona has a special form. (PD-pattern)

In most cases, corona changes the PD value linear with the voltage

picture 17: corona PD pattern

10.3.3. Inner partial discharges

In general, all partial discharges that are not audible or visible are considered to be inner partial discharges. Insulating mediums can be a solid, liquid or gaseous.

Discharges occur, where homogeneities of the medium lie under strong field influence, for example in the case of gas bubbles, which are located in an insulating fluid, for example oil, or in cast resin. These gas bubbles, consisting of air, carbon dioxide (e.g. in case of influence of humidity at the hardening of polyurethane resin) or oil decomposition gases, has an inferior dielectric constant compared to the surrounding oil, which leads to an increase of field power. The insulating characteristics of the gas bubble are disturbed by the locally lower electrical strength, which results in partial discharges. As well as not correctly connected built-in parts in building elements, which have been produced through cast resin or treatment (switching power supply transformers, high tension cascades) leading to partial discharges. Other examples include transformer windings which are not sealed, made of enameled copper wire, used in switching power supply transmissioners and flimsily winded membrane capacitors for applications of ac voltage.

Inner partial discharges, because of ultraviolet radiation and ionization can, in the long run, cause damage the surrounding insulating material and therefore have to be avoided.

In the PD-Measuring Software, internal PD has a special form.

(PD-pattern)

In most cases, in a small voltage range the PD value doesn't change dramatically while the voltage is changing. The PD inception voltage is higher than the PD extinction voltage.

picture 18: inner PD pattern

10.3.4. PD classification:

On a transformer, you can have a mixed form of PD sources.

10.4. Measurement

All windings with an Um \geq 3.6 kV are to be tested.

10.4.1. Measurement chamber

The measurement is carried out in a faraday cage, shielding the transformer from incoming electromagnetic fields. Furthermore, the test bay has to be of an adequate size, to ensure enough distance from the transformer to coupling-capacitors, the voltage source, walls, etc., prohibiting disturbances of the electric field during the execution of the measurement.

10.4.2. Connection

The voltage supply is applied in the same way as the induced over voltage test (clause 6).

Three coupling-capacitors (voltage divider) Ck are connected to the HV-windings.

PD- and voltage signals are separated via a quadripole/measuring impedance under the coupling-capacitor. The quadripole is connected via a fiber optic cable to the measurement PC.

picture 20: test setup on HV side

picture 21: Equivalent circuit diagram for apparent charge

10.4.3. Tapping position for measurement

The test shall be performed in the principal tap.

10.4.4. Measurement Frequency band

According to IEC 60270, we measure in a wide band

 $f_{center} = 250 \ kHz$ $f\Delta = 300 \ kHz$

This means we measure discharges (apparent charge) with a Bandwidth between 100kHz and 400kHz. For this, the pulse resolution time Tr is $5\mu s - 20\mu s$ or with active integrator Tr < $1\mu s$

Note: Narrow band can also used (Bandwidth 9kHz – 30kHz Frequency range between 50kHz – 1MHz)

10.4.5. Calibration

Before the actual measurement can take place, a calibration of the measurement circle is necessary. Therefore, a defined PD-impulse with a PD charge calibrator is fed between each conducted phase of the transformer and the earth. This value then has to be divided through the value received on the measurement device. The result of this calculation is called a "calibration factor". With this factor, all measurement results are multiplied incl. the base interference level (performed by the software).

The charge calibrator we use has a pulse repetition frequency of 300 Hz and a pulse rise time from < 4 ns

10.4.6. Measuring duration and voltage levels

The measurement is carried out over a time of 210 seconds, where in the first 30 seconds it is tested with a voltage U_{meas} of 1.8 x U_{rated} .

For the other 180 seconds U_{meas} = 1.3 x U_{rated} (picture).

picture 22: voltage-time diagram for PD-measurement

10.4.7. Test setup

10.4.8. for supplying

picture 23: Test setup for measurement of partial discharge

- S: electricity supplyT2: transformer to be tested
- T3: current transformer
- T4: voltage transformer

10.4.9. for measuring

P1: wattmeter P2: amperemeter (I_{RMS}) P3: voltmeter (U_{RMS})

Ck = couple-capacitors

- Zm = measurement impedance
- pC = measurement device with reading of pC
- q0 = PD charge calibrator (only to be used previous to testing)

picture 24: test setup of the PD-measurement

10.4.10. Commonly used measuring devices for measurement

measuring devices	manufacturer	type	range / accuracy	frequency	class
PD-measurement	Omicron	MCU502	500 fC - 3nC	0 - 32 MHz	0.01-0.03
system		3xMPP600			

table 8: Commonly used measuring devices

10.4.11. Recorded values for the measurement

The background level and the maximum PD values within the 180 sec. for all phases in [pC], are then recorded in the test protocol.

10.5. Test criteria / Maximum values

- > The Background level should not exceed the half of the value of the maximum PD level.
- > The partial discharge level is allowed a maximum of 10pC with correction factor.

11.Appendix

Technical data					U SGB Year dedicated p
3 Phase dry-type transforme	r according to Sta	ndard IEC 6007	6-11:2018		
Eco Design regulation 548/2014 // 20	122456780/10		Social numbers	122456	
Tupe:	DTTH1NG 3150/3	0	Wd number:	123456	
Protection // Mass dry-type transfor	mer:		IP00 / Indoor // 6851 k	(g	
Maximum altitude [m]:		1000	manufacturing year :	2.2020	
Max. temp. of cooling medium [°C]:		55	Manufacturer:	SGB Starkstrom - Ger	ätebau GmbH
Kind: PT Service: Continue					
Environment class: E2 Climate	class: C2 Fire cl	ass: F1			
Max. dur. of short circuit [sec.]: 2	ÎE/ÎN:6,7	To,s [sec.]: 0,31	Magnetic flux density B	[T]: 1,649	
Corematerial: Grain-oriented electric	cal steel Mass [kg]:	4288,2			
		HV	LV		
Rated power [kVA]:		3900	3900		
		+2x 750V (2,5 %)			
Rated voltage [V]:		30000	690		
		-2x 750V (2,5 %)			
Rated current [A]:		75,06	3263,3		
Um/LI/AC [kV]:		36 / 170 / 70	1,1/8/3		
Insulation class:		F	F	Frequency [Hz]:	50,00
Max. temperature rise [K]:		85	85	Vector group:	Dyn11
Conductor material / Mass [kg]:		AI / 681	AI / 699	Cooling:	AF
Continuous chort circuit current [kA]	le l	0,66	28.88		

Template Nr.: 02.04.80-11.001 | Rev.H.04 | 13.02.2020

2 / 11 page SGB Starkstrom - Gerätebau GmbH Ohmstraße 10, DE-93055 Regensburg Test Lab Cast Resin Transformers www.sgb-smit.com

Type:		123456789/ DTTH1NG 31	10 150/30		Serial-number Wd. number	er: :	123456 123456
Mossurament	fvoltage	atio and	check of	nhaco die	nlacama	nt	
weasurement o	voltage	atio allu	check of	phase us	placeme	in.	
connection HV / LV:		31500/690	30750/690	30000/690	29250/690	28500/690	
deviation in [%]:	Phase U Phase V	-0,03	-0,03	-0,03	-0,03	0,01	
	Phase W	-0,01	-0,02	-0,02	-0,02	-0,01	
				0.00			
deviation Phase	Phase U Phase V	-0.01	-0.01	-0.01	-0.01	-0,03	
displacement [*]:	Phase W	-0,03	-0,03	-0,03	-0,03	-0,04	
Εκ	imple pictures o	and schematic	→ o U1 → o S refer to a sta) C U undard transfo	ر ا	U2 0 C	actual product may be possible.

SGB order number: Type:		123456789/10 DTTH1NG 3150/30		Serial-number: Wd. number:		123456	
Measurement of	winding	resistance				120400	
connection:	ну	30.000 kV					
connection.	1U - 1V	1,71755					
Measured values in [Ω]:	10 - 1W	1,71922					
	1V - 1W	1,72478					
connection:	LV	0,690 kV					
	2U - 2V	0,0003740					
Measured values in [Ω]:	2U - 2W 2V - 2W	0,0003892 0,0003753					
Temperature 22,0°C							
Used measuring instrume	nts:						
1W Exam	ple pictures	1V	Ω Landard transfo	2W rmer. Deviations fr	rom the actual prod	2V 2V	sible.

SGB order number: Type:	123456789/10 DTTH1NG 3150/30		Serial-number: Wd. number:	123456 123456	
Measurement	of no-load loss and	l current			
Voltage D/Jr	Currente [A]	Lorror DMI:			
Un 689.9	6 5.567	P, 1459	lo [%]:	0.155 Po [W]:	4507
U ₂₃ 690,7	I ₂ 3,994	P ₂ 1166			
Ua1 689,3	I ₃ 5,590	P ₃ 1882			
0 690,0	T 5,050	Σ 4507			
The measurement unc Precision Power Analyz Current-transformer: H	xertainty is max. ± 0,31% ter: Zimmer LMG 500 Nr. 12t 1&B Ti48 Nr. 81 K 163 H&B	Used measuring instru 191605 Ti48 Nr. 81 K 164 H&	uments: 88 Ti48 Nr. 81 K 165		
	S	P2 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)		10 2V 2V 2V 2V 2V 1V 1V 1V 1V 1V 1V 1V 1V 1V 1V	
Ex	ample pictures and schemati	ics refer to a standard	transformer. Deviations from	the actual product may be possib	le.
				SGB Starkstrom - Geräteb	au GmbH

dicated parts SER-SMIT Exe

Measurement of partial discharge

Testing voltage

Frequency 200 Hz			
30 sec.	[kV]	180 sec.	[kV]
1,8 * UrHV	54,00	1,3 * UrHV	39,00
1,8 * UrLV	1,242	1,3 * UrLV	0,897

123456 123456

Test results in pC:

Testing voltage	10	1V	1W
1,3 * Ur	1	1	1
Background level	1	1	1

Measuring circuit

Measurement in tap:	3 30 kV
Calibration factor Kū (qo/q):	2,9
Measurement device	100 - 400

Tested by, Date of test

bandwidth [kHz]:

Example pictures and schematics refer to a standard transformer. Deviations from the actual product may be possible.

8 / 11

page

SGB Starkstrom - Gerätebau GmbH Ohmstraße 10, DE-93055 Regensburg Test Lab Cast Resin Transformers www.sgb-smit.com

Appendix						U so	edicated partner SEE-SMT Decep
SGB order number:	123456789/10	Serial-number:			123456		
Type:	DTTH1NG 3150/30	Wd. number:			123456		
Test results / 3.1 A	cceptance test certificate a	ccording to DIN	EN 1020	04:2004			
Routine testing							Test passe
Dielectric tests							
Separate-source AC withstand voltage test / HV / LV / of auxiliary wiring: Induced AC withstand voltage test LV:	age test / HV / LV / of auxiliary wiring: LV:		71	0 / 3 / 2 [kV]; 5 1,38 [kV]; 200	i0 [Hz]; 60 [sec.] [Hz]; 30 [sec.]		1
			Guarantee values:	tolerance:	Measured values:	deviation:	
Measurement of voltage ratio Ratio at connection HV / LV [%]:	and check of phase displacement		30000/690	± 0,50	-0,03		~
Measurement of winding resis	tance at 22,0 °C						
Measurement of winding resistance	e HV LV						×
Measurement of no-load loss	and current at 50 Hz						
Po [W]:			4750	+0,0%	4507	-5,12%	×
lo [%]:					0,155		<u> </u>
Measurement of short-circuit	impedance and load loss at 120 °C						
PI at 3900 kVA; HV/LV [W]:			34031	+0,0%	32543	-4,37%	~
ez at 3900 kVA; HV/LV [%]:			10,55	±18,0%	11,30	7,10%	~
Po + PI [W]:			38781	+0,0%	37050	-4,46%	~
PEI (at k[PEI] 0,37 = 1451 kVA) [%]:			99,348	-	99,379	0,03%	 Image: A start of the start of
Measurement of partial discha	irge						
PD max. HV at 1,3 x Rated voltage	pC]: (Background level 1 [pC])		≤10		1		 Image: A second s

Approved by / Regensburg,

SGB Starkstrom - Gerätebau GmbH Ohmstraße 10, DE-93055 Regensburg Test Lab Cast Resin Transformers www.sgb-smit.com

SGB order number: Type:	123456789/10 DTTH1NG 3150/30	Serial-number: Wd. number:	123456 123456	
EU-Declaration of C	onformity			
Hereby we declare that the pr to the designated EU Directive	oduct designated above (serial number), below. In the case of a modification to t	in regards to its design and build and he product that is not coordinated wi	the model placed into circulatio th us, this Declaration shall beco	n by us, corresponds me invalid.
The conformity with the follow	ving directives / regulations is declared:			
_ DIRECTIVE 2009 ecodesign requi	/125/EC OF THE EUROPEAN PARLIAMEI rements for energy-related products	NT AND OF THE COUNCIL of 21 Octob	er 2009 establishing a framewo	ork for the setting o
COMMISSION R the Council with	EGULATION (EU) No 1783/2019 of 1 oct regard to small, medium and large pov	ober 2019 on implementing Directiv	e 2009/125/EC of the European	Parliament and of
Applied harmonized standards	s are especially:			
Other standards applied are: = EN 60076-11:20	18			
Head of Engineering Cast Resin Transformers Starkstrom - Gerätebau GmbH		Teamleader Test Lab Cast Resin Transformers Starktrom - Gerötebau G	mbH	
	Regensburg,	Stanstrom - Geratebau G		
			SGB Starkstrom - Gerätebau	GmbH

11.2. Example rating plate

Type: DTTH1NG 3150/30 Serial-number: 123456 Customer item no.: 123456 Standard: IEC 60076-11:2018 Eco Design regulation 548/2014 // 2009/125/EG Customer specification: XY								
Rated power [kVA]:	3900	39	00					
Rated voltage [V]:	+2x 750V (2,5 %) 30000 -2x 750V (2,5 %)	69	90					
Rated current [A]:	75,1	326	33,3					
Um / LI / AC [kV]: Insulation class / Max. temperature rise [K]:	36 / 170 / 70 F / 85	1,1 / F /	8/3 85					
Conductor material / Mass [kg]:	AI / 681	AL/	699					
Continuous short-circuit current [kA]:	0,66	28,	,88					
Protection / Mass dry-type transformer: IP00 Indoor / 6851 kg Maximum altitude: 1000 m Environment class: E2 Climate class: C2 Fire class: F1 Kind: PT Service: Continue Max. dur. of short circuit [see: L2 ÊE / Dir & C7 Tur. [see: L0 31								
PI at 3900 kVA; HV/LV [W]:	32543,5	32543,5 F		50				
ez at 3900 kVA; HV/LV [%]:	11,30	at 120°C	Vector group: Cooling:	Dyn11 AF				
Po [W]: 4506,83 PEI (k[PEI] 0,37) [%]: 99,379			manufacturing year :	2.2020				
Corematerial: Grain-oriented electrical steel Mass [kg]: 4288,2								
3 Phase dry-type STA transformer	RKSTROM-GERÂTEBAU Gn Ohmstraße 10 DE-93055 Regensburg	SGB Your dedicated partner of the S68-SMIT Group	CE					

11.3. Example calibration list

				Kalibrierung von N	leßgeräten im GT	Р					O see	
		Cal	ibration of n	neasuring equipm	ent in test field di	str. transfo	rmer		Lette		and the log	
		Kenteller	Trp.	FL-MAL	Mellbereich	Frequenz	Channel .	Standort	Kellbrierung	Nilchete Kel	CTUDIE	
H5-SpanWandler	Westerny owner	epro	NVRD 40	2/06/5355	2-40 kV/300 V	50/60 Hz	0,02	Routine	28.12.3053	Dec 2016	In Ordnung	Čiti Čiti
HS-Span,-Wandler HS-Span,-Wandler	W-voltage-transf.	epro eoro	NVRD 40 NVRD 40	2/06/5858	2-40 kV/300 V	50/60 Hz 50/60 Hz	0.02	Routine	28.12.2053	Deg 2016	In Ordnung In Ordnung	0x0 0x0
HS-Strom-Wandler	HV-current-transf.	epro	NCD 60	2/06/5547	5-600 A/S A	50/50 Hz	0,05	Routine	27.12.2053	Dec 2016	In Ordnung	000
HS-Strom-Wandler	HV-current-transf.	-	NCO 60	2/06/5950	5-600 A/5 A	50/90 Hz	0.05	Routine	27.12.2053	Dec 2016	In Ordnung	010
NS-Strom-Wandler NS-Strom-Wandler	LV-current-transf.	H 840	14 14	81 K 184	2,5-500 A/5 A 2,5-500 A/5 A	50/50 Hz 50/50 Hz	61 61	Routine	23.12.2053	Dec 2016	in Ordnung In Ordnung	ôi0
NS-Strom-Wandler HS-Span,-Wandler	LV-current-transf. HV-voltage-transf.	H 848 1970	TE 48 NVCS 80	01 X 105 20045345	2,5-500 A/5 A 2-30 kV/100 V	50/90 Hz 50/90 Hz	0,1 0,02	Routine Schallmessmum, Noise & PD	28.12.2053	Dec 2016 Dec 2016	In Ordnung In Ordnung	000 000
HS-SpanWandler	W-voltage-transf.	epro	NVOS 80	2/06/53/48	2-20 kv/300 v	50/60 Hz	602	Schallmessmum, Noise & PD	28.12.2053	Dec 2016	In Ordnung	000
H5-Strom-Wandler	HV-current-transf.	epro	NCO 30	20565332	5-50 A/5 A	50/60 Hz	0,05	Schallmessmum, Noise & PD	27.12.2053	Dec 2016	In Ordnung	õiio
KS-Strom-Wandler KS-Strom-Wandler	HV-current-transf. HV-current-transf.	epro epro	NCO 30 NCO 30	2006/5341	5-50 A/5 A 5-50 A/5 A	50/60 Hz 50/60 Hz	0,05	Schallmessnum, Noise & PD Schallmessnum, Noise & PD	27.12.2003	Deg 2016 Deg 2016	In Ordnung In Ordnung	04D ÖKD
KS-Span,-Wandler KS-Span,-Wandler	Wwoltage-transf. Wwoltage-transf.	MMB	NU2635 NU2635	TX485007 TX485003	3-85 kV/100 V	50/90 Hz 50/90 Hz	0,005	Wärmelauf, Heat Rise 1+2 Wärmelauf, Heat Rise 1+2	09.10.2053	Okt 2016 Okt 2016	In Ordnung In Ordnung	000 000
HS-Span,-Wandler	W-voltage-transf.	MWB	NUZG 15	73468993	8-85 kV/100 V	50/60 Hz	0,005	Wärmelauf, Heat Rise 1+2	14.10.2053	Okt 2016	in Ordnung	000
KS-Strom-Wandler KS-Strom-Wandler	HV-current-transf. HV-current-transf.	MWB	170 90 170 90	84250883	2400 A/S A 2400 A/S A	50/60 Hz 50/60 Hz	0,05 0,05	Wärmelauf, Heat Rise 1+2 Wärmelauf, Heat Rise 1+2	0730200	Oit 2016 Oit 2016	In Ordnung In Ordnung	000
KS-Strom-Wandler KS-Strom-Wandler	HV-current-transf. LV-current-transf.	R112	NOSW 60 M TI 40x5	8093181	5-600 A/S A 2.5-250 A/S A	50/60 Hz 50/60 Hz	0,05 0,1	Wärmelauf, Heat Rise 1+2 Wärmelauf, Heat Rise 1+2	07.10.2053	Okt 2016	In Ordnung In Ordnung	010 010
NS-Strom-Wandler	LV-current-transf.		14	4712115	2,5-250 A/S A	50/50 Hz	0.1	Wärmelauf, Heat Rise 1+2	17.09.2052	Sep 2016	In Ordnung	000
NS-Ston-Wendler	LV-current-transf.	8/12	KSW 73	80945235	100A/SA	50/60 Hz	ů.	Wärmelauf, Heat Rise 1+2	29.01.2015	Jan 2018	In Ordnung	Werkskallbrierung
NS-Strom-Wandler NS-Strom-Wandler	LV-current-transf. LV-current-transf.	R112 R112	KSW 73 KSW 73	80943240 80943240	SOBA/SA SOBA/SA	50/50 Hz 50/50 Hz	33	Wärmelauf, Heat Rise 1+2 Wärmelauf, Heat Rise 1+2	29.01.2015	Jan 2018 Jan 2018	In Ordnung In Ordnung	Werkskallbrierung Werkskallbrierung
HS-Span,-Wandler HS-Span,-Wandler	W-voltage-transf.	epro epro	NVRD 40 NVRD 40	2/06/5855	2-40 kV/100 V	50/60 Hz 50/60 Hz	0.02	Wärmelauf, Heat Rise 3+4 Wärmelauf, Heat Rise 3+4	28.12.2053	Der 2016 Der 2016	In Ordnung In Ordnung	000 000
HS-Span-Wandler	W-voltage-transf.	epro	NVRD 40	2/00/5354	2-40 kV/100 V	50/60 Hz	0,02	Wärmelauf, Heat Rise 3+4	28.12.3003	Dec 2016	In Ordnung	000
KS-Strom-Wandler	HV-current-transf.	epro	NCO 60	2/06/5349	5400 A/S A	50/90 Hz	9,05	Wärmelauf, Heat Rise 3+6	27.12.2003	Dec 2016	in Ordnung	000
KS-Strom-Wandler KS-Strom-Wandler	HV-current-transf. LV-current-transf.	epro epro	NCD 80004	2/06/5851 2/01/2152	5-600 A/S A 50 - 8000 A	50/90 Hz 50/90 Hz	0,05 0,1	Wärmelauf, Heat Rise 3+6 Wärmelauf, Heat Rise 3+6	27.12.2053	Dec 2016 Okt 2016	In Ordnung In Ordnung	000 000
NS-Strom-Wandler NS-Strom-Wandler	LV-current-transE.	epro	NCD 3000d	20012153	50 - 3000 A	50/90 Hz	0,1 0.1	Wärmelauf, Heat Rice 3+4 Wärmelauf, Heat Rice 3+4	01.10.2053	C61 2016	In Ordnung	000 000
NS-Store-Wandler	W-current-transf.	R/172	KSW 73	80949141	150A/5A	50/50 Hz	Ω.	Wärmelauf, Heat Rice 3+4	29.01.2055	Jan 2018	In Ordnung	Werkskallbrierung
NS-Strom-Wandler	LV-current-transf.	RITZ	KSW 73	20143143	150A/5A	50/50 Hz	4	Wärmelauf, Heat Rice 3+4 Wärmelauf, Heat Rice 3+4	29.01.2005	lan 2018	In Ordnung	Werkskallbrierung
KS-Strom-Wandler KS-Strom-Wandler	LV-current-transf. LV-current-transf.	H 88	Ti dia Ti dia	1001005	2-2500 A/5 A 2-2500 A/5 A	50/50 Hz 50/50 Hz	0,1 0,1	Messgeritteschrank Messgeritteschrank	05.09.2058	Sep 2016 Sep 2016	In Ordnung In Ordnung	0x0 0x0
KS-Storn-Wandler KS-Storn-Wandler	W-current-transf.	HAR	Ti dia	871GM5	2-3500 A/S A	50/50 Hz	0,1	Messgeräteschrank	06.09.2052	Sep 2016	In Ordnung	040
NS-Stom-Wandler	LV-current-transf.	GOSSEN	55W2	PT 219	S-800 A/S A	SO Ha	ů.	Messgeräteschrank	16.09.2053	Sep 2016 Sep 2016	In Ordnung	DED
RS-Stron-Wandler Schallpegelkalibrator	Vicurent-transf. Accetical Calibrator	BAK	55W2 4231	2722012	5-800 A/S A 94,0 d9	50 Hz 5000 Hz	ці 1	Schallmessaum, Noise & PD	18.09.2053	Sep 2016 Nov 2016	In Ordnung In Ordnung	DKD DKD
Schwingungska Brator IsolationarseRpecit	Cellbrator Ins. realist mater	BAK GOSSEN	4294 Metrico 5000	2401775 PT 1354	50ma-2/10mma/10um 5-20000 MOhm	559,2 Hz DC	-	Messgeräteschrank Rossine	15.04.2056	Apr 2017	In Ordnung In Ordnung	DED
a clation are eliger lit	ins, resist, - meter	GOSSEN	Metriao 5000 A	LPASI	50 k Ohm - 1 TOhm	DC		Messgeräteschrank	06.03.3056	Mrs 2017	In Ordnung	DED
Hochspannungsprüfer Hochspannungsprüfer	High Voltage Texter High Voltage Texter	ETL Prüftechnik ETL Prüftechnik	UK28A UK28C	2.003092+13	S EV/100 mA S EV/100 mA	50 Hz 50-60 Hz	15 25	Wagen für Vorprüfungen Routine	15.02.2056	Feb 2017 Jan 2017	In Ordnung In Ordnung	DED
Multimeter Multimeter	Multimeter Multimeter	FLUKE	Rube-67-V Rube-67-V	20100413	5000V/30A	50-60 Hz 50-60 Hz	0,1-1,0	Routine Wärmelauf, Heat Rise, allgemein	07.01.2056	ian 2017 Feb 2017	In Ordnung In Ordnung	DED DED
Multimeter	Multimeter	FLUIKE	Ruke-87-V Material-8185	20070200	1000V/10A	50-60 Hz	0.1-1.0	Wagen für Vorprüfungen	07.11.2015	Nov 2016	In Ordnung	DKD
					-50-100*C							
Druck/Termo/Narometer	Hygro-/Thermo- /Barometer	Greidinger electronic	GFTB 200	34902550	0% - 100% Rel. Luftfeachte			Stosspannungsplatz	25.01.2056	Jan 2017	In Ordnung	Werkskallbrierung
		Greidneer			6-70 °C							
Feuchtemessgeritt	Hygro-/Thermometer	electronic	GFTHISS	000355-01	10-95% s.F.			Routine	07.01.2056	Jan 2017	In Ordnung	DHD
Digitalthermometer	Digitalithermometer	Greidinger electronic	ethed s	0149-120	-198,9 - 198,9*C	-	Q,1	Wagen für Vorprüfungen	15.02.2056	Feb 2017	In Ordnung	DED
Obersetzungenemgerät	Transformer Turns Ratio Meter	HADFELY / Tettes	TTR 2796	176502	0,8 - 20000 10,68% - 2 0,15%	50/60 Hz	0,05	Wärmelauf, Heat Rise 3+4	17.09.2006	Mrs 2017	In Ordnung	KEMA
Obersetzungenemgerät	Transformer Turns Ratio Meter	HAIFELY / Tettes	TTR 2796	177.492	0,8-20000 x0,00%-10,15%	50/60 Hz	0,05	Wärmelauf, Heat Rise 1+2	11.05.2056	Mai 2017	In Ordnung	KENA
Wicklungsenskysetor	Winding Analyser	HALFELY / Tetlex	WIA 2290	179742	elehe Zertifikat	50/60 Hz	dehe Zertifik	Routine	24.09.2055	Sep 2016	In Ordnung	KEMA
and the second sectors	With the standard		-	10000	data Territoria	TO STOLEN		Manual Review Officers			-	Western Balance
and the second meters of the s	Access Second researching	INGRO	10.4200	1141-41	And a second	ALC: N		and an an and an and an			an oriented in	The second second
Wicklungschranseter	Micro Chrometer	Power AB - DV	RMONOT	1802418		DC .	Q2	Wärmelauf, Heat Rise 1+2	29.09.2006	Mrs 2017	in Ordnung	DKD
		IBERIO										
Withlingsofurmeter	Micro Churneter	Power AB - DV Power	IMONOT	1002428		BC	3	Warmelaut, Heat Rise 1+2	16101055	OWYJOIN	in Ordnung	Werkskallbrierung
Wicklungsohverseter	Micro Olummeter	IBERD Power AB - DV	RMONUT	10004018		DC	6 2	Wärmelauf, Heat Rise 1+2	04.03.2056	Mrs 2017	In Ordnung	DKD
		Power										
Wicklungschronseter	Micro Chunneter	Power AB - DV	RMOSOT	2955778	0,5 µ.Ohm - 2000 Ohm	DC	1,2	Wärmelauf, Heat Rise 3+4	12.01.2056	Jan 2017	In Ordnung	DED
		IBEKD										
Wicklungschranseter	Micro Chrameter	Power AB - DV Power	RMOSOF	2955745	0,1 µOhm - 2000 Ohm	DC .	2	Wärmelauf, Heat Rise 3+4	01.02.2056	Feb 2017	In Ordnung	DND
Weblanechenneter	Micro Chrometer	IBERID Power All - DV	EMONOT	2955758	0.1 x0hm - 2000 Ohm	DC	12	Wirmelauf, Heat Rice 3+4	12.01.2056	Jan 2017	In Onlineane	80
		Porser										
Wicklungsolverneter	Micro Olymmeter	Porser AB - DV	EMO60T	1201008	0,5 pOhen - 2000 Ohen	DC	ца —	Wagen für Vorprüfungen	28.05.2055	Mar 2016	In Ordnung	DED
Weblungsohrenseter	Micro Chrometer	TINSLEY	5895	275081	1,1µOhm-180 Ohm	DC	0,1	Tectarbeitspists fahrbar	22.05.2055	Mar 2016	In Ordnung	DKD
Wicklungsohnmeter	Micro Ofwarmeter	TIRSLEY	5895 CPC 100	20203 001997	\$1pOhn-180 Ohn		0,1 	Routine	11.12.2015	Dec 2016	in Ordnung	DED
Universiteeligerlit	hutsument	Omicon	CP TD1 CP 581	MP214V LIGHTZW	slehe Zertifikat	siehe Zertifikat	lettikat	Messgerliteschrank	25.08.2015	Aug 2016	In Ordnung	Werkskallbrierung
Ti-Kalbrator	PD-Calibrator	Omicron	CAL 542 Version B	14:5000	1-100 pC	300 Hz	-	Schallmessmum, Noise & PD	11.07.2015	Jul 2016	In Ordnung	Werkskallbrierung
TE-Kallbrator	PD-Galibrator PD-Galibrator	MPS	TPK	218114	S SD ByC	500 Hz	-	Schallmessaurs,Noise & PD	07.09.2055	Sep 2016 Sep 2016	In Ordnung	Werkskallbrierung
Scheiteligerungsmessgeritt Messkondensetor	Peak voltage meter Measuring capacitor	MPS MPS	5000 MB(200	211108	200 kV	50/90 Hz 50/90 Hz	2,0	Wärmelauf, Heat Rise 3+4	26.10.2055	C612016	In Ordnung	Vor Ort Kellbrierung
Scheiteliparinungsmeisigerlit Messkondensator	Peak voltage meter Measuring capaditor	M/NS M/ND	SMG CMB0	211155	100 kV	50/60 Hz 50/60 Hz	2,0	Routine	26.10.2055	C61 2016	In Ordnung	Vor Ort Kallbrierung
Dubucachas postation	Data Acceletion link	WORDCOMM.	DA100-13-5F	91L010537	A.100V		0.57	Wirmshord Hart Dire 1	11 01 2005	las 2017	h Onlynn	
			DT800-11	91MC19218								~
Datenerfassungssystem	Data Acquisition Unit	YORDGAMA	DA100-13-5F 2x DU100-12	911.010655 91.0329413/91.1329417	e-aserc		0,58	Wärmelauf, Heat Rise 2	11.01.2056	Jan 2017	In Ordnung	DKD
			DT800-11 DA100-18-5F	91.009413 1935/06554								
Date nerfassungssystem	Data Acquisition Unit	YOROGAINIA	2x DU100-12 DT800-11	12A418354712A418581 12A424545	e-aserc		0,18	Wärmelauf, Heat Rise 3	14.01.3055	Jan 2016	In Ordnung	DKD
Debroefvermenteters	Data Armshitten linit	VOIDGAME	DA100-13-55	91,009414	6.35PV		0.97	Wirmshorf Hart Dire A	07.01.2016	he 2017	in Onlyana	
and a state of the			DT800-11	9IMC19217				Contraction, result Pase 4		1000		
Midschirrsschreiber	Temperature recorder	AUMO	Logoscreen st	10230002				Wärmelauf, Heat Rise, allgemein	07.12.2055	Dec 2016	In Ordnung	DKD
PrEzisiona-Leistungs- Mesugerät	Digital-powermeter	ZIMMER	1403-000	00010010	Ume 1000 V / Ime 82 A Upk 8200 V / Ipk 520 A	DC-10MHz	0,05-0,03	Wärmelauf, Heat Rise 4	05.01.2056	Jan 2017	In Ordnung	DED
Pril shione-Leistunge- Messawilt	Precision Power Analyzer	ZIMMER	1403-000	12471808	Ume 1000 V / Ime 22 A	DC-10MHz	0,05-0,03	Schallmessmum, Noise & PD	06.08.2055	Aug 2016	In Ordnung	Werkskallbrierung
Pril shione Leistunge-	Precision Power Analyzer	ZIMMER	1.443.800	12030000	U mie 1000 V / I mie 32 A	DC-10MHz	0,05-0,03	Routine	19.05.2006	Mar 2017	In Ordnung	Werkskallbrierung
Prilipina Laistungs-	Precision Power Anabour	ZIMMER	1403 500	12091005	U me 1000 V / I me 22 A	DC - 10 MHz	0.05-0.02	Wärmelauf, Heat Rice 1	18.053056	Mar2017	In Ordnung	Werkskelbelerung
Präskiona-Leistunga-	Precision Prover Anabara	TIMMER	1100.000	02922010	U mie 1000 V / 1 pk 120 A	DC-10Mile	0.05-0.02	Wärmelauf, Hagt Rive 3	07.01.2056	he 2017	In Ordnung	040
Mesagerät Präcklore-Leistungs-	Section Section (Section)		L L LOS AND		Upk 3200 V / 1 pk 520 A Umme 1000 V / 1 mme 32 A							
Mengerät Präskione-Leistunge-	Precision Power Analyzer	an keven			Upk 3200 V / 1 pk 520 A	DC-30MH	due-dus	Nextger#Leach/ank	051052055	Bal 2016	an Ordinang	080
Mangaritt Infederational	Precision Power Analyzer	21MMER	1.003.010	10005447	Upk 2000 V/1pk 60A	DC-1 MHz	2,05	Messgeräteschrank	05.08.2005	Mrs 2016	in Ordnung	CHD
Mengerät	Precision Power Analyzer	ZIMMER	LMG 310	80104401	Upk 2000 V/1pk 60A	DC-1 MHs	8,05	Wärmelauf, Heat Rise 2	16.02.2056	Feb 2017	In Ordnung	DKD
Stolapannungenessiystem	imp. voltage test system	High Volt	SMC 2000-400	906223	50 - 400 KV 20 M			Stossspannungsplatz	27:10:2005	C61 2016	In Ordnung	Vor Ort Kellbrierung
Consume submitter	The second second			905343	Dis 2005	Dia Maria		Manual Band and	17.02.2005		h Onlynn	-

on list SGB cast resin Regeneburg 15.07.2010

11.4. Test lab layout

picture 25: test lab layout

picture 26: routine and heat rise bays

picture 27: PD and sound chamber

11.5. List of pictures, formulas, tables and sources

LIST OF PICTURES:	
PICTURE 1: TEST SETUP FOR SEPARATE-SOURCE AC WITHSTAND VOLTAGE TEST	6
PICTURE 2: VOLTAGE VECTORS	8
PICTURE 3 : TEST SETUP FOR THE MEASUREMENT OF THE VOLTAGE RATIO	9
PICTURE 4: PHASE TO PHASE RESISTANCE	12
PICTURE 5: NO-LOAD CHARACTERISTICS	14
PICTURE 6: TEST SETUP FOR INDUCED AC WITHSTAND VOLTAGE TEST	15
PICTURE 7: TRANSFORMER IN NO-LOAD	17
PICTURE 8: TEST SETUP FOR MEASUREMENT OF NO-LOAD LOSSES AND OF NO-LOAD CURRENT	17
PICTURE 9: TRANSFORMER IN SHORT-CIRCUIT	20
PICTURE 10: TEST SETUP OF THE SHORT-CIRCUIT MEASUREMENT	20
PICTURE 11: MATERIAL CONSTANT OF AL AND CU	21
PICTURE 12: KAPPIC TRIANGLE	22
PICTURE 13: CONNECTION OF TEMPERATURE SENSORS	24
PICTURE 14: LICHTENBERG-FIGURE IN AN ASHLAR OF ACRYL. ACTUAL SIZE: 76MM × 76MM × 51MM	25
PICTURE 15: SCHEMATIC DISPLAY OF THE DEVELOPMENT OF PARTIAL DISCHARGE IN A SHARP POINT-PLATE ARRANGEMENT GENERA	ATED
THROUGH INCOMING RADIATION	25
PICTURE 16: THE SLIDING DISCHARGE ON A BOARD OUT OF POLYCARBONATE LEADING TO THE DESTRUCTION OF THE INSULATOR	26
PICTURE 17: CORONA PD PATTERN	26
PICTURE 18: INNER PD PATTERN	27
PICTURE 19: PD CLASSIFICATION	27
PICTURE 20: TEST SETUP ON HV SIDE	28
PICTURE 21: EQUIVALENT CIRCUIT DIAGRAM FOR APPARENT CHARGE	28
PICTURE 22: VOLTAGE-TIME DIAGRAM FOR PD-MEASUREMENT	29
PICTURE 23: TEST SETUP FOR MEASUREMENT OF PARTIAL DISCHARGE	30
PICTURE 24: TEST SETUP OF THE PD-MEASUREMENT	30
PICTURE 25: TEST LAB LAYOUT	45
PICTURE 26: ROUTINE AND HEAT RISE BAYS	45
PICTURE 27: PD AND SOUND CHAMBER	45
LIST OF FORMULAS:	
FORMULA 1: VOLTAGE RATIO FORMULA FOR TRANSFORMERS	8
FORMULA 2: OHMIC LAW	11
FORMULA 3: CALCULATION OF THE DURATION FOR THE INDUCED AC WITHSTAND VOLTAGE	14
FORMULA 4: CALCULATION OF THE CORRECTED IRON LOSSES	16
FORMULA 5: CALCULATION OF SHORT-CIRCUIT LOSSES AT MEASURED TEMPERATURE	21
FORMULA 6: CONVERSION OF THE OHMIC LAW	21
FORMULA 7: CALCULATION OF THE OHMIC LOSSES AT MEASURED TEMPERATURE	21
FORMULA 8: CALCULATION OF ADDITIONAL LOSSES AT MEASURED TEMPERATURE	21
FORMULA 9: CALCULATION OF THE OHMIC LOSSES AT A REFERENCE TEMPERATURE	21
FORMULA 10: CALCULATION OF ADDITIONAL LOSSES AT A REFERENCE TEMPERATURE	22
FORMULA 11: CALCULATION OF SHORT-CIRCUIT LOSSES AT REFERENCE TEMPERATURE	22
FORMULA 12: CALCULATION OF SHORT-CIRCUIT VOLTAGE AT MEASURED TEMPERATURE	22
FORMULA 13 : CALCULATION OF THE OHMIC PARTS OF SHORT-CIRCUIT VOLTAGE AT MEASURED TEMPERATURE	22
FORMULA 14: CALCULATION OF THE IMAGINARY PART EX	22
FORMULA 15: CALCULATION OF THE OHMIC PARTS OF THE SHORT-CIRCUIT VOLTAGE AT A REFERENCE TEMPERATURE	23
FORMULA 16: CALCULATION OF THE SHORT-CIRCUIT VOLTAGE AT A REFERENCE TEMPERATURE	23

LIST OF Tables:

TABLE 1: COMMONLY USED MEASURING DEVICES	7
TABLE 2: COMMONLY USED MEASURING DEVICES	10
TABLE 3: COMMONLY USED MEASURING DEVICES	13
TABLE 4: COMMONLY USED MEASURING DEVICES	15
TABLE 5: COMMONLY USED MEASURING DEVICES	18
TABLE 6: COMMONLY USED MEASURING DEVICES	20
TABLE 7: COMMONLY USED MEASURING DEVICES	24
TABLE 8: COMMONLY USED MEASURING DEVICES	30

list of sources:

- > D.J. Kraaij Die Prüfung von Leistungstransformatoren
- Wikipedia
- > IEC
- > Omicron